

DESIGN NOTE s

RS485 Tra nsc eivers Susta in $\pm 60 \mathrm{~V}$ Fa ults - Design Note 203

Gary Maulding

Introduction

The LT ${ }^{\oplus} 1785$ and LT1791 RS485/RS422 transceivers with $\pm 60 \mathrm{~V}$ fault tolerance solve a real-world problem of field failures in typical RS485 interface circuits. Modems and other computer peripherals usepoint-to-point RS422 connections to support higher communication speeds with better noise immunity over greater distances than is possible with RS232 connections. Multipoint RS485 networks areused for LANs and industrial control networks. All of these applications are vulnerable to the unknown, sometimes hostileenvironment outside of the controlled, shielded environment of a typical electrical equipment chassis. Because the RS485 transceivers are directly in the line of fire, the transceiver chips are often socketed PDIP packages to allow easy field servicing of equipment. Feld failures in standard transceiver circuits are caused by data-line voltages exceeding the absolute maximum ratings of the transceiver chips. Installation wiring faults,

Figure 1. LT1785 Input Current vs V_{IN}
ground voltage faults and lightning-induced surge voltages are all common causes of overvoltage conditions.

Up to $\pm 60 \mathrm{~V}$ Faults

The electrical standards for RS422 and RS485 signaling reflect the need for tolerance of ground voltage drops in an extended network by requiring receivers to operate with input common mode voltages from -7 V to 12 V . The RS485 and RS422 transceivers commonly availablefrom various vendors are all vulnerable to damage from fault voltages only slightly outside of the operating envelope. One vendor's RS485 transceivers have absolute maximum voltage ratings of -8 V to 12.5 V on thedatal/Opins. Such narrow margins beyond the required -7 V to 12 V operating conditions makes such circuits very fragile in a real-world environment. In addition, external protection circuitry is ineffective at protecting these circuits without corrupting normal operating signal levels.

The LT1785 and LT1791, with $\pm 60 \mathrm{~V}$ absolute maximum ratings on the driver output and receiver input pins are inherently safein most environmentsthat will destroy other interface circuits. Standard pinouts in either PDIP or SO packages allow easy upgrades to existing RS422/RS485 networks. Whether thecircuitistransmitting, receiving, in standby or powered off, any voltage within $\pm 60 \mathrm{~V}$ will be tolerated by the chip without damage. Data communication will be interrupted during the fault condition, but the circuit will live to talk another day. Fgure 1 shows the I-V characteristics at the RS485 input/output pins.
©Y, LTC and LT are registered trademarks of Linear Technology Corporation.

Figure 2. Half-Duplex RS485 Network Operation $\pm 60 \mathrm{~V} D \mathrm{DC}, \pm 15 \mathrm{kV}$ ESD Protected

128-Node Networks at 250kbaud

Inadditiontotheir uniquefaulttolerancecapabilities, these transceivers feature high input impedance to support extended RS485 networks of up to 128 nodes (Fgure2). Controlledslew-rateoutputs minimizeBMl problems while supporting dataratesupto250kbaud (seeFgure3). Driver outputs arecapable of working withinexpensivetelephone cable with characteristic impedance as low as 72Ω with no loss of signal amplitude. " A " grade devices are available that ensure "fail safe" receiver outputs when inputs are open, shorted or no signal is present.

Figure 3. Normal Operation Waveforms at 250kbaud

Extending Protection Beyond $\pm 60 \mathrm{~V}$

While $\pm 60 \mathrm{~V}$ fault tolerance forgives a great number of sins, higher voltage demons may still be lurking. ESD is one such demon, with voltage spikes into the thousands of volts. TheLT1785 and LT1791 haveon-chip protection to $\pm 15 \mathrm{kV}$ air gap ESD transients for other high voltage faults, such as lightning-induced surgevoltages or ACline shorts. For such high energy faults, external protection must be used to protect the circuits. Typical protection networks use voltage clamping and current limiting networks. In concept, such networks could be used with normal RS485 circuits to afford extended protection, but in practice, the addition of protection networks would
interfere with normal operation of the data network. The voltage clamping Zeners or TransZorbs ${ }^{\circledR}$ arenot available in tight voltage tolerances, and in addition, their internal impedances cause several volts of additional potential above their nominal breakdown voltage to appear at the protected device's pins. To protect acircuit with $\mathrm{a}-8 \mathrm{~V}$ to 12.5 V absolutemaximum voltagerating would requirethe use of protection devices with voltage ratings much below the required common mode range of RS485 networks interfering with normal data transmission.

Figure4 gives an example of the use of external clamping and limiting components to extend the LT1785's $\pm 60 \mathrm{~V}$ tolerancetothepeak 120VAClinevoltage. 36VTransZorbs areused to clampthetransceiver's linepins below the60V capability of the transceiver. During a 120V AClinefault, peak surgecurrents of nearly 3 A will flow throughthe 47Ω limiting resistors and the PolySwitch ${ }^{\text {TM }}$ limiters. The peak current rating and series resistance of the TransZorbs must be considered when selecting the clamp device to ensurethat the clamp limiter can withstand the surgeand that the peak voltage will remain below the $\pm 60 \mathrm{~V}$ limitations of the LT1785. At 3A, even high current TransZorbs will exceed their nominal breakdown voltage by several volts, making this protection method ineffective with transceiver circuits with only 1 V to 4 V margin abovetheir operating ranges. The PolySwitch limiters are thermally activated and increase in resistance by many orders of magnitudein about 10 ms . After the PolySwitchtransition, fault currents are only a few milliamperes. Carbon compositeresistors must be used for limiting theinitial surge current before the PolySwitch transition point. Metal film resistors do not have effective surgeoverload ratings and will fail before the PolySwitch transition drops the currents to sustainable levels.

TransZorb is a registered trademark of General Instruments, GSI. PolySwitch is a trademark of Raychem Corporation.

Figure 4. Limiter Network Clamps 120V AC Fault Voltage to Less Than $\pm 60 \mathrm{~V}$

Data Sheet Download
http://www.linear-tech.com/go/dnLT1785
http://www.linear-tech.com/go/dnLT1791

For literature on our Interface products, call 1-800-4-LINEAR. For applications help, call (408) 432-1900, Ext. 2453
-LINEAR TECHNOLOGY CORPORATION 1999

